5.0 Geg:
$$m = 1.5 \text{ kg}$$
; $\alpha = 30^{\circ}$; $AB = 3.0 \text{ m}$; $R = 0.20 \text{ fg}$

5.1 Ges: μ

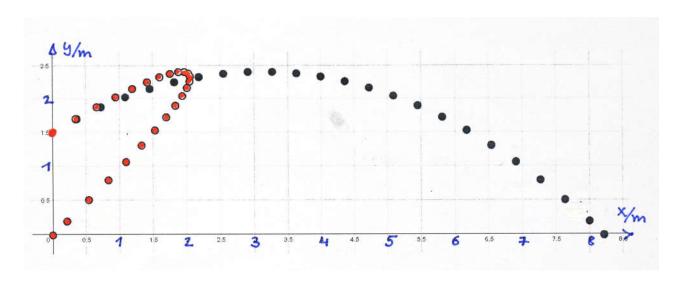
The = 0.20 $F_{g} \Rightarrow \mu$ amy coo (w) = 0.20 my $\Rightarrow \mu$. Cos (w) = 0.20

C=> $\mu = \frac{0.20}{\text{Cos}(\kappa)} = \frac{0.20}{\text{cos}(30^{\circ})} \Rightarrow \mu = 0.23$

5.2 Ges: V_{A}
 $V_{B} - V_{A}^{2} = 2 \text{ as } \Leftrightarrow V_{A} = \sqrt{V_{B}^{2}} - 2 \text{ as } \Rightarrow V_{A} = \sqrt{V_{B}^{$

Einfluss mehrerer Kräfte: Aufgabe 5 (2/3)

5.4 Ges: Heugzeit tp


$$t_F = t_S + t_{Falk}$$
; t_{Falk} für hans = 2,4 m: Vom Scheilel aus

 $k_{SM} = \frac{1}{2}gt_{Falk}^2$ (=> $t_{Falk} = \sqrt{\frac{2Rges}{8}}$
 $t_F = t_S + \sqrt{\frac{2h_ges}{g}} = 0,43s + \sqrt{\frac{2\cdot 2.4m}{9.84 \text{ ms}^2}} = 0,43s + 0,70s$
 $t_F = 1,13s = 1.1.s$

5.5 Ges: Warfweite $x_W = B^*C$
 $x_W = v_{ox} \cdot t_F = v_o \cdot cos(\omega) \cdot t_F = 8,4 \frac{m}{s} \cdot cos(30^\circ) \cdot 1,2s$
 $x_W = 8.0 \text{ m}$ (8,2 m mit $t_F = 1.13s$)

5.6 Ges: $v = \sqrt{v_x^2 + v_y^2}$; $v_S = v_{ox} = v_o \cdot cos(\omega)$; Aufprisi $v_{ox} = v_{ox} \cdot cos(\omega) \cdot v_{ox} \cdot v_{o$

. 7	
	die resultierende Beschleunigung a = Tw
	dafür sorgt, dass wahrend der Flugzeit t==1,16s
	der Körper wie der eine x-Koordinate von 0 m bekom
	also x (tp) = x (1.16s) = 0
	$x(t) = -\frac{1}{2}at_{F}^{2} + v_{0}t_{F} = 0$
	$\Rightarrow \frac{1}{2}at_F^2 = V_{ox} \cdot t_F$
	$C \Rightarrow \frac{2 v_{ox} \cdot t_{F}}{\alpha} = \frac{2 \cdot v_{o} \cdot \cos(\alpha)}{t_{F}} \cdot m$
	$m \cdot a = F_w = \frac{2 \cdot v_0 \cdot \cos(\alpha) \cdot m}{t_F}$
	2.8,4 \frac{m}{s} \cdot \cos (30°) \cdot 1.5 \text{kg} = D \text{Fw} = 19,3 N
	$\Rightarrow F_W = 19 N$; $F_G = m \cdot g = 1.5 kg \cdot 9.81 \frac{N}{kg} = 15 N$
0	For ist in der Größenordnung der Gewichtera
	=> Da musste ein ziemlicher Sturm wehen!

